If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2+y-3=0
a = 10; b = 1; c = -3;
Δ = b2-4ac
Δ = 12-4·10·(-3)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*10}=\frac{-12}{20} =-3/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*10}=\frac{10}{20} =1/2 $
| 2(u+5)=-4(2u-1)+u | | 0.3=0.8^x | | 2x+45+4=180 | | 150x-100x+38800=4100-150x | | -9y-16=-2(y-6) | | x=−96+16√39/−32 | | 5(x-8)=-6x-18 | | 3(4x+1)=6(5x+1) | | -5x+(-2x)+7-11=-12x+5-7 | | x=−96+1639√−32 | | 5/x=2.7/8.1 | | √2+3x=2-√3x | | 2s+16=4s- | | 2z+5z+4z-8z=6 | | 5/16x+21/4=10 | | x÷2+10=31 | | X-165t-13=8+3(31-2t) | | 69=3x+18 | | X-4(2x+9)=5-7x | | 2(x-1)+3x=18 | | 5(x+3)-6=7(3x+8)-10 | | 13x+7x=72 | | 6x+3x=3x+8 | | 16=(8*x) | | 7(u-4)-4u=-34 | | 14q+5q-12q-3q=-20 | | 1/4x+1/3x-x=x+1/4x+32 | | 2x=4(2+3) | | 6x+2x=3x+8 | | 16=8xx | | 4x-28=x+28 | | 7(2x+3)+14=81 |